Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene co-expression network connectivity is an important determinant of selective constraint.

Identifieur interne : 001380 ( Main/Exploration ); précédent : 001379; suivant : 001381

Gene co-expression network connectivity is an important determinant of selective constraint.

Auteurs : Niklas M Hler [Norvège, Suède] ; Jing Wang [Suède, Norvège] ; Barbara K. Terebieniec [Suède] ; P R K. Ingvarsson [Suède] ; Nathaniel R. Street [Suède] ; Torgeir R. Hvidsten [Norvège, Suède]

Source :

RBID : pubmed:28406900

Descripteurs français

English descriptors

Abstract

While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.

DOI: 10.1371/journal.pgen.1006402
PubMed: 28406900
PubMed Central: PMC5407845


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene co-expression network connectivity is an important determinant of selective constraint.</title>
<author>
<name sortKey="M Hler, Niklas" sort="M Hler, Niklas" uniqKey="M Hler N" first="Niklas" last="M Hler">Niklas M Hler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Terebieniec, Barbara K" sort="Terebieniec, Barbara K" uniqKey="Terebieniec B" first="Barbara K" last="Terebieniec">Barbara K. Terebieniec</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28406900</idno>
<idno type="pmid">28406900</idno>
<idno type="doi">10.1371/journal.pgen.1006402</idno>
<idno type="pmc">PMC5407845</idno>
<idno type="wicri:Area/Main/Corpus">001363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001363</idno>
<idno type="wicri:Area/Main/Curation">001363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001363</idno>
<idno type="wicri:Area/Main/Exploration">001363</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene co-expression network connectivity is an important determinant of selective constraint.</title>
<author>
<name sortKey="M Hler, Niklas" sort="M Hler, Niklas" uniqKey="M Hler N" first="Niklas" last="M Hler">Niklas M Hler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Terebieniec, Barbara K" sort="Terebieniec, Barbara K" uniqKey="Terebieniec B" first="Barbara K" last="Terebieniec">Barbara K. Terebieniec</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Selection, Genetic (genetics)</term>
<term>Systems Biology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie des systèmes (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (génétique)</term>
<term>Sélection génétique (génétique)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Regulatory Networks</term>
<term>Quantitative Trait Loci</term>
<term>Selection, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Locus de caractère quantitatif</term>
<term>Réseaux de régulation génique</term>
<term>Sélection génétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Genome-Wide Association Study</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Phenotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Systems Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie des systèmes</term>
<term>Cartographie chromosomique</term>
<term>Génome végétal</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28406900</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene co-expression network connectivity is an important determinant of selective constraint.</ArticleTitle>
<Pagination>
<MedlinePgn>e1006402</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1006402</ELocationID>
<Abstract>
<AbstractText>While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mähler</LastName>
<ForeName>Niklas</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0003-2673-9113</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Terebieniec</LastName>
<ForeName>Barbara K</ForeName>
<Initials>BK</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0001-9225-7521</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Street</LastName>
<ForeName>Nathaniel R</ForeName>
<Initials>NR</Initials>
<Identifier Source="ORCID">0000-0001-6031-005X</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hvidsten</LastName>
<ForeName>Torgeir R</ForeName>
<Initials>TR</Initials>
<Identifier Source="ORCID">0000-0001-6097-2539</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="Y">Systems Biology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28406900</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1006402</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-16-02227</ArticleId>
<ArticleId IdType="pmc">PMC5407845</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Mar 18;398(6724):236-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jun 9;101(6):577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10892643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Dec;26(4):415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Jul;17(7):388-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Jan;3(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 26;296(5568):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11923494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Oct;32(2):261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12219088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 20;422(6929):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9894-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12907700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Feb;5(2):101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14735121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 12;430(7001):743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2368-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Mar;37(3):243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15711544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Feb;172(2):1155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Feb;172(2):1179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 27;437(7063):1365-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Dec;1(6):e78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16362079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Jul;173(3):1347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1197-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Mar;8(3):206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17304246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2099-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Oct;39(10):1202-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(1):90-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Oct;3(10):2007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Aug;24(8):408-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18597885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2008 Jun;83(3):265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Dec;180(4):1909-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008 Oct 13;8:283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18851755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Feb;19(2):234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19141596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2009 Mar;41(3):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 May;19(5):723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Aug;10(8):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1118-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 1;464(7289):768-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20220758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hum Genet. 2010 Apr;55(4):195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 4;107(18):8492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2010 Jun 15;7:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Sep;63(6):1063-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D28-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jan 20;7(1):e1001276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 May;21(5):645-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res (Camb). 2010 Dec;92(5-6):361-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 May;21(5):725-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jun 30;12:336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21718468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Nov;26(11):577-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 May 15;28(10):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(4):e1002662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22532807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22662190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Jun 29;13:288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2012 Jul 20;13:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22817272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Dec 15;28(24):3211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(11):e1003055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23189034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Mar 1;29(5):645-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Mar;14(3):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23381120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 May;9(5):e1003502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 18;8(7):e68141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Sep;25(9):3266-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24045022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Jan;24(1):14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24092820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24174544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24343161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 09;15:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(4):1069-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 May;46(5):430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24728292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jun 03;5:4071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24892934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 16;14:276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Nov 25;15:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25420514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Mar;32(3):674-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2014 Dec 4;95(6):660-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25480033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Feb;199(2):379-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Feb 25;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 May 05;4:e05255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25939354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Jul;16(7):409-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26055156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Dec;208(4):1149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26192091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2016 Jan;107(1):82-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Oct 01;16:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26424194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Oct;25(10):1427-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26430152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15390-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26604315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Mar;202(3):1185-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1754-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26983554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Jun 15;12(6):e1006121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27305007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Oct;212(2):338-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27575589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Oct;135(2):367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8244001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="M Hler, Niklas" sort="M Hler, Niklas" uniqKey="M Hler N" first="Niklas" last="M Hler">Niklas M Hler</name>
</noRegion>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="M Hler, Niklas" sort="M Hler, Niklas" uniqKey="M Hler N" first="Niklas" last="M Hler">Niklas M Hler</name>
</noRegion>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<name sortKey="Terebieniec, Barbara K" sort="Terebieniec, Barbara K" uniqKey="Terebieniec B" first="Barbara K" last="Terebieniec">Barbara K. Terebieniec</name>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001380 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001380 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28406900
   |texte=   Gene co-expression network connectivity is an important determinant of selective constraint.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28406900" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020